Force-clamp analysis techniques give highest rank to stretched exponential unfolding kinetics in ubiquitin.
نویسندگان
چکیده
Force-clamp spectroscopy reveals the unfolding and disulfide bond rupture times of single protein molecules as a function of the stretching force, point mutations, and solvent conditions. The statistics of these times reveal whether the protein domains are independent of one another, the mechanical hierarchy in the polyprotein chain, and the functional form of the probability distribution from which they originate. It is therefore important to use robust statistical tests to decipher the correct theoretical model underlying the process. Here, we develop multiple techniques to compare the well-established experimental data set on ubiquitin with existing theoretical models as a case study. We show that robustness against filtering, agreement with a maximum likelihood function that takes into account experimental artifacts, the Kuiper statistic test, and alignment with synthetic data all identify the Weibull or stretched exponential distribution as the best fitting model. Our results are inconsistent with recently proposed models of Gaussian disorder in the energy landscape or noise in the applied force as explanations for the observed nonexponential kinetics. Because the physical model in the fit affects the characteristic unfolding time, these results have important implications on our understanding of the biological function of proteins.
منابع مشابه
The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques.
We use single-molecule force spectroscopy to study the kinetics of unfolding of the small protein ubiquitin. Upon a step increase in the stretching force, a ubiquitin polyprotein extends in discrete steps of 20.3 +/- 0.9 nm marking each unfolding event. An average of the time course of these unfolding events was well described by a single exponential, which is a necessary condition for a memory...
متن کاملDirect observation of markovian behavior of the mechanical unfolding of individual proteins.
Single-molecule force-clamp spectroscopy is a valuable tool to analyze unfolding kinetics of proteins. Previous force-clamp spectroscopy experiments have demonstrated that the mechanical unfolding of ubiquitin deviates from the generally assumed Markovian behavior and involves the features of glassy dynamics. Here we use single molecule force-clamp spectroscopy to study the unfolding kinetics o...
متن کاملRefolding upon force quench and pathways of mechanical and thermal unfolding of ubiquitin.
The refolding from stretched initial conformations of ubiquitin (PDB ID: 1ubq) under the quenched force is studied using the C(alpha)-Gō model and the Langevin dynamics. It is shown that the refolding decouples the collapse and folding kinetics. The force-quench refolding-times scale as tau(F) approximately exp(f(q)Deltax(F)/k(B)T), where f(q) is the quench force and Deltax(F) approximately 0.9...
متن کاملDwell-time distribution analysis of polyprotein unfolding using force-clamp spectroscopy.
Using the recently developed single molecule force-clamp technique we quantitatively measure the kinetics of conformational changes of polyprotein molecules at a constant force. In response to an applied force of 110 pN, we measure the dwell times of 1647 unfolding events of individual ubiquitin modules within each protein chain. We then establish a rigorous method for analyzing force-clamp dat...
متن کاملFluctuations of primary ubiquitin folding intermediates in a force clamp.
Folding experiments of single ubiquitin molecules under force clamp using an atomic force microscope revealed a dynamic long-lived intermediate with nanometer scale end-to-end distance fluctuations along an unexpectedly complex folding pathway. To examine the nature of this intermediate at the atomic level as well as the driving forces that give rise to the observed fluctuations, we performed m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 103 10 شماره
صفحات -
تاریخ انتشار 2012